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Abstract 

Within a successful CAE driven product development, there are two fundmental issues: a seamless 
interaction between the CAD and CAE software tools and a fast solver for very large scale computation. The 
first issue is associated with the discretization of any complexly shaped domain into elements for a 
mesh-based method, such as the Finite Element Method (FEM) or Boundary Element Method (BEM). In the 
best case modifications in the CAD model can be transferred to the CAE model and vice versa. The second 
issue is inevitable for a daily design process, as a complete simulation chain for practical problems usually 
involves very large scale computations and can be very long. 

To render a standard approach that may ensure a seamless interaction between CAD and CAE, several kinds 
of boundary type meshless method have been proposed, such as the Boundary Node Method (BNM)[1] and 
the Hybrid Boundary Node Method (HdBNM). The BNM combines the moving least-squares (MLS) 
approximation with the Boundary Integral Equations (BIE) in order to retain both the meshless attribute of 
the former and the dimensionality advantage of the latter. Unfortunately, the BNM still uses the standard 
elements for boundary integration and approximation of the geometry, thus loses the advantages of the 
meshless methods. This work presents a new implementation of the boundary node method (BNM). In this 
implementation, here called the boundary face method (BFM)[2], the boundary integration is performed on 
boundary faces, which are represented in parametric form exactly as the boundary representation (Brep) data 
structure in solid modelling. The integrand quantities, such as the coordinates of Gauss integration points, 
Jacobian and out normal are calculated directly from the faces rather than from elements. The resulted 
method requires a nodal data structure on the bounding surface of a body only, and hence has potential to 
make direct use of a body’s parametric representation, which is available in most of CAD packages. In order 
to deal with thin structures, a mixed variable interpolation scheme of 1-D MLS and Lagrange Polynomial for 
long and narrow faces. An adaptive integration scheme for nearly singular integrals has also been developed.  

Due to the non-local kernels of the integral operator in the BIE, the coefficient matrix is fully populated. This 
leads to that both the memory requirement and CPU time for solving the system equation are of O(N2) 
complexity, where N is the number of unknowns. Several methods that dramatically reduce memory and 
computational cost have been developed in the last two decades. Among these methods the most popular 
ones are the Fast Multiple Method (FMM) [3], the Hierarchical Matrix[4] and the Adaptive Cross 
Approximation (ACA) [5]. The FMM reduces numerical complexity to O(N). However, the implementation 
of the FMM depends on a priori knowledge of the kernel function, which is to be expanded by spherical 
harmonic series. The Hierarchical Matrix combined with ACA, taking advantage of the rank-deficient 
nature of the coupling matrix blocks representing well-separated clusters interactions, is a purely algebraic 
algorithm, namely the computational speed-up is achieved through linear algebra manipulations of the 
matrix, e.g. QR decomposition, SVD, LU decomposition, etc. Due to its algebraic nature, ACA can be 



modular and very easily integrated into various existing BEM codes. In this work, we will adopt the ACA to 
accelerate the BFM computation. 

So far, in most implementations of the fast BEM, constant elements are used. As constant elements are 
discontinuous, they are independent to each other. The simple connectivity between constant elements 
makes it easy to computation cluster to cluster interactions in FMM or other acceleration techniques. 
Moreover, as analytical integrals on a constant element are available, there is no need to evaluate the 
boundary integrals numerically. This largely simplifies the boundary integration computation and reduces 
memory requirement. However, constant elements are not efficient to approximate the geometry of a surface 
with small radius of curvature. More importantly, the results for stresses at boundary points obtained with 
constant elements are often inaccurate, as the derivatives of shape functions of constant elements are zero. 
The BFM is a general framework in which any kinds of shape function can be used. In the current 
implementation, the shape function from MLS has been employed, thus the numerical integration is 
inevitable as there is not even an explicit expression for the MLS shape functions. In order to integrate the 
numerical integration into the ACA, we have elaborately developed a general algorithm to connect 
near-field and far-field integrations. 

The combination between the BFM and ACA results in an efficient algorithm not only in terms of 
computational cost but also in terms of human-labor cost, as the work for preparing the computational model 
is greatly simplified. A number of application examples, including those from real world product design, are 
presented. 
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